Braiding and Entanglement in Nonabelian Quantum Hall States

نویسنده

  • G. Zikos
چکیده

Certain fractional quantum Hall states, including the experimentally observed ν = 5/2 state, and, possibly, the ν = 12/5 state, may have a sufficiently rich form of topological order (i.e. they may be nonabelian) to be used for topological quantum computation, an intrinsically fault tolerant form of quantum computation which is carried out by braiding the world lines of quasiparticle excitations in 2+1 dimensional space time. Here we briefly review the relevant properties of nonabelian quantum Hall states and discuss some of the methods we have found for finding specific braiding patterns which can be used to carry out universal quantum computation using them. Recent work on one-dimensional chains of interacting quasiparticles in nonabelian states is also reviewed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skein Theory and Topological Quantum Registers: Braiding Matrices and Topological Entanglement Entropy of Non-abelian Quantum Hall States

We study topological properties of quasi-particle states in the non-Abelian quantum Hall states. We apply a skein-theoretic method to the Read–Rezayi state whose effective theory is the SU(2)K Chern–Simons theory. As a generalization of the Pfaffian (K = 2) and the Fibonacci (K = 3) anyon states, we compute the braiding matrices of quasi-particle states with arbitrary spins. Furthermore we prop...

متن کامل

Quantum groups and nonabelian braiding in quantum Hall systems

Wave functions describing quasiholes and electrons in nonabelian quantum Hall states are well known to correspond to conformal blocks of certain coset conformal field theories. In this paper we explicitly analyse the algebraic structure underlying the braiding properties of these conformal blocks. We treat the electrons and the quasihole excitations as localised particles carrying charges relat...

متن کامل

Wavefunctions for topological quantum registers

We present explicit wavefunctions for quasi-hole excitations over a variety of nonabelian quantum Hall states: the Read-Rezayi states with k ≥ 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quas...

متن کامل

Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum g...

متن کامل

Shortcuts to nonabelian braiding

Topological quantum information processing relies on adiabatic braiding of nonabelian quasiparticles. Performing the braiding operations in finite time introduces transitions out of the ground-state manifold and deviations from the nonabelian Berry phase. We show that these errors can be eliminated by suitably designed counterdiabatic correction terms in the Hamiltonian. We implement the result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008